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ABSTRACT

To assess the resolution of the local gravity field from kinematic measurements, a state
model for motion in the gravity field of the earth is formulated. The resulting set of equations can
accommodate gravity gradients, specific force, acceleration, velocity and position as input data and
can take into account approximation errors as well as sensor errors.

1. PROBLEM STATEMENT

The last few years have seen major advances in kinematic methods of gravimetry.
Shipborne gravimetry, already a reliable tool, will be further enhanced by using accurate position
and velocity information from differential GPS. Airborne gravimetry in either the fixed wing
aircraft or helicopter mode experienced a resurgence over the last few years and is at the point
where it provides gravity information of acceptable accuracy for wavelengths down to 10 or 15
km. Airborne gravity gradiometry has entered the testing stage and holds great potential for short
wavelength resolution. Compared to even fifteen years ago, there is now a variety of sensors on
the market and it appears that a judicious combination will yield information on different parts of
the gravity spectrum. To assess different sensor configurations, a model is needed which allows
the combination of kinematic measurements from gravity gradiometers, dynamic gravity meters,
inertial sensors, differential GPS, laser altimeters, precise pressure altimeters and similar devices.
The model must allow for the interaction of gravitational and inertial measurements and must be
able to take sensor biases and measurement noise into account. The formulation of such a model

using state space techniques is the topic of this extended abstract. A detailed derivation with a
comprehensive list of references will be published in the near future.

2. THE STATE SPACE MODEL OF KINEMATIC GEODESY

Newton's second law for motion in the gravitational field of the Earth, expressed in an
inertial frame of reference (i), will be taken as the starting point

i'i =fi + gi (I)

where ri is the position vector from the origin of the inertial frame to the moving object and i'i is
the second time derivative of this vector, fi is the specific force vector, and g i is the vector of all
gravitational accelerations acting on the moving object.

The set of nonlinear second-order differential equations (1) can be transformed into a set of
first-order equations of the form

v= 1 . (2)

_'i f. + g i
1

In general, measurements will not be taken in an inertial frame of reference but in an arbitrary body
frame (b). They can, be transformed into an inertial reference frame by

f i = Rib f b (3)

where Rib is a three-dimensional orthogonal matrix transforming f b from the body frame (b) to
the inertial frame (i). Note that the subscripts denote the direction of the rotation, not the element in
the matrix. It is obvious from equation (3) that measurements fb can only be used if Rib is known
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or can be measured. Thus, a set of three first-order differential equations for the rotation rates Rib
has to be added to equation (2). They are of the form

= Rib _2b_' (4)

where f_ib is the skew-symmetric matrix of angular velocities.

Similarly," gravitation is usually not given in an inertial frame but in the Conventional
Terrestrial frame, which will be denoted by (e) in the following. We thus have the transformation

g- i = Riege • (5)

Since the rotation rate of the Earth can be considered constant for the applications discussed here,
no additional equations for Rie have to be added. Using equations (3) to (5) in (2) leads to the
state equations

/'i vi

_ti= _'i = ib fb + Rie g e (6)

ib Ri b ff_ib

describing rigid-body motion in three-dimensional Euclidean space by three rotational and three
translational parameters.

The implicit assumption in equation (6) is that graviltation g e is known. In that case, the
measurement of the specific force f b and the rotation rates Rib is sufficient to determine position,
velocity, and attitude as functions of time. If gravitation is not known as a function of time,
additional measurements are necessary. They can be of two types, inertial or gravitational. In the
first case, vi is determined independently, in the second case _ i is obtained. In both cases,
gravitation and inertia can be separated in the second set of equations in (6). Thus, in principle,
position, velocity, attitude and gravitation can be obtained by measuring f b, Rib and either vi or gi
independently. The second case which is that of gravity gradiometry will now be discussed.

To transform equation (6) into a system that also admits gravity gradiometer measurements,
a set of equations describing the change of the gravitational vector with time has to be added. It is
obtained by differentiating equation (5)

gi :Riege +Rie_e =Rie(niee ge+ge)

ie ie
=Rie(_ieege +Geve) = _i gi + Gi(vi-_i ri)

O- e b2Ve
Ge

where
(7)

(8)

is the matrix of second-order gradients of the gravitational potential Ve. The state vector which
includes gradient measurements of type (7) is therefore of the form

ii=

i-i

'_i

g

vi

Rib fb + gi

Ri b f_b

D_e _i +Gi (vi - D_eri)

(9)
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3 CHANGE OF COORDINATE FRAME AND LINEARIZATION

In many cases, results are required in an earth-fixed coordinate frame and transformation of
equations (9) into such frames are needed. They obviously involve the representation of the
corresponding states in a rotating frame. The transformations are somewhat tedious and are given
here without proof for the conventional terrestrial frame (e) and for the local-level frame (1).

In the first case, we get

Xe =

e

e

:b

e

Y e

Reb fb - 2f2_ e Ve + ge

Re b _b

{Reb Gb Rbe - D_e D_e) Ve

(10)

where ge is the gravity vector. The transformation into the local-level frame 1, using curvilinear

(% _., h)-coordinates, follows along similar lines, and results in the state vector

:t I
Rib

Dvl

Rlbfb-{2_i e + f2_ 1} Vl + g l

R1 b f]lb

.-.ie .-.ie_
IRlbGbRbl-a_! azl IVl-nelgl

(11)

where

O

1/R 0 0)
0 1/(R cos q:)) 0
0 0 1

The state equations derived up to this point are all nonlinear. The f'trst step towards the
solution of the differential equation system is usually linearization about a reference trajectory. The
reference trajectory is obtained by introducing a gravity model into equation (9) and by integrating
the gravity corrected measurements. Equation (9) can be written in the general form

= f {r, v, w, g} (12)

where w denotes the angular velocities in the B ib and the _"_ie matrices. Subscripts have been
omitted for convenience. It can be rewritten as

_O+dx o = f{r o+dr,v °+dv,w °+dw,_°+dg } (13)
where the superscript o denotes the reference trajectory and d the perturbation. By separating the
reference trajectory

_o = f{rO, v o,w o,go} (14)

from equation (12) and considering only first-order perturbations, the following set of equations is
obtained
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i)IF1F2F3Fn//r)dv F21 ...... dv

d_v = F31 ...... dw

d g F41 .... F44 d g

which is a set of linear homogeneous state equations of the form

(15)

= Fx (16)

The matrices F11 to F33 are well known from the literature. F41 to F44 are obtained by developing
the perturbation solution for g. In the local-level frame, we get the reference solution

_o = {G o (rO)_ f2ie(ro) _ie(ro)} v o + f/el(ro ) _O(rO ) (17)

and the perturbation solution

dg = {G ° - f_ie_ie} dv +dG v° - _el dg - df2elg ° (18)

where

fbG°dr 0G°dv _G° j I
dG = (G - G °) + t----0-/- + ""d'V" + -,j-if- aw / (19)

Using equations (18) and (19) in (15) will give the desired solution.

4 SENSOR ERROR MODEL

The linearized model given by equation (16) is the kinematic description of rigid body
motion in the gravity field of the Earth. Except for approximation errors, it is a rigorous model. If
sensors are used to determine the trajectory and the gravity vector, the above model has to be
augmented by a set of error states for each of the sensors used and by system noise. The resulting
equations will be of the general form

0/¢x = +

2 0 F 2 _x2)

Gu (20)

where Xl contains the states in equation (15) and x2 the error states, and where FI and F2 are the
corresponding dynamics matrices, and Gu describes the system noise. The F2-matrix has a block-
diagonal structure because the error states of the individual sensors are uncorrelated.

The error states are modeled in a stochastic manner by random biases, random walk
models, or simple Gauss-Markov processes. Some judgement is required to decide whether a
specific error source is modeled into x2 or into Gu. If real-time estimation is performed with the
model (20), a small state vector is often desirable.
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